
Tree-based methods - Basic
Réda Arab

1 Introduction - Decision-trees

Goal : Stratifying or segmenting the predictor space into a number of simple
regions : decision-tree methods.

■ Simple and useful for interpretation

■ Not competitive with the best supervised learning approaches in terms
of prediction accuracy.

We will discuss bagging, random forests and boosting. Theses methods grow
multiple trees which are then combined to yield a single consensus pre-
diction. Combining a large number of trees can often result in dramatic
improvements in prediction accuracy.

These methods can be used both for regression and classification.

Figure 1 – Example of a decision tree for a classification task

2 Structure - Decision-trees
The final regions at the end are the terminal nodes or leaf nodes.

The points along the tree where the predictor space is split are referred as
internal nodes.

Figure 2 – General structure

3 Regression trees
We focus on this section on regression problems.

Process

1. We divide the predictor space into J distinct and non-overlapping re-
gions R1, R2, . . . , RJ

2. For every observation that falls into Rj , we make the same prediction :
the mean of the response values for the training observations in Rj

1

In theory, the regions could have any shapes. However, we choose to divide
into high-dimension rectangles or boxes for simplicity and interpreta-
bility.

The problem can be summarized as finding the boxes R1, . . . , RJ that mi-
nimize the RSS (Residual Sum of Squares) :

J∑
j=1

∑
i;xi∈Rj

(yi − ŷRj
)2

where yRj
is the mean response on the region Rj

However, it is computationally infeasible to consider every possible
partition of the feature space into J boxes. So we take a top-down,
greedy approach : recursive binary splitting.

Recursive binary splitting

General idea : We begin at the top of the tree and then successively split
the predictor space. The algorithm is greedy because the best split is made
at each step and we do not try to find the best global solution.

Algorithm : At each step, we try all the possible splits for each feature (if we
have n datapoints, we only need n − 1 splits per feature) and we select the
predictor Xj and the cutpoint s which leads to the greatest reduction
in RSS.

Figure 3 – Example of the recursive binary splitting with two features

The prediction for a given test observation is therefore the mean response
of the region in which that observation belongs.

When do we stop growing the trees ?
If we make the tree as large as possible, we will face overfitting. If each
region has few terminal nodes (for example 1), it tends to overfit.
Smaller trees with fewer splits might lead to lower variance and better in-
terpretation (at the cost of a little bias).
One possible strategy : grow the tree as long as the decrease in the RSS
exceeds some threshold. However, a ’bad’ split can be followed by a very
good split. So we use another approach known as pruning.

Pruning
Grow a very large tere T0, and prune it back in order to obtain a subtree.
Cost complexity pruning, also known as weakest link pruning, is used to do
this.
For each nonnegative parameter α, there is a subtree T such that

|T |∑
m=1

∑
i:xiinRm

(yi − ŷRm)2 + α|T |

is minimized. |T| is the number of terminal nodes of the tree T (refers to
the complexity of the tree). We choose the parameter α by cross-validation.

Figure 4 – Example of a decision tree for regression

2

4 Classification trees
They are similar to regression trees in the structure and we build them in
the same way.
For each observation, we predict that it belongs to the most commonly
occurring class in the region in which the observation belongs.
We do not use the RSS as a loss of function but the Gini Impurity or the
Cross-entropy / Deviance.
Gini Impurity
For K classes, it is defined on the region Rm as

G =
K∑

k=1
p̂mk(1 − p̂mk)

where p̂mk is the proportion of training examples in the region m which are
in the kth class.
It measures the total variability accross the K classes. It takes small values
when the p̂mk are close to 0 or 1. A small value indicates that a class is
predominant in the region.
Cross-entropy / Deviance
For K classes, it is defined on the region Rm as

D = −
K∑

k=1
p̂mk · log(p̂mk)

Figure 5 – Example of a classification tree

Trees are not always the best thing to do as we can see in the example
below :

Figure 6 – Trees vs linear models

Decision-trees are easy to explain and interpret, can be displayed graphically,
handle qualitative predictors and to some extent mimic human-decision ma-
king. However, the prediction accuracy not as good as some other methods.
It is why we will see methods which consist in aggregating many deci-
sions trees in order to improve the prediction accuracy.

3

5 Bagging
Bagging (bootstrap aggregating) is a general procedure for reducing the
variance of a statistical learning method. It is useful and used fre-
quently in the context of decision trees.

Method for regression
— From a original training set D, we generate B training sets D1, . . . , DB

of the same size of D, sampled from D with replacement.

— Then, we train our method (decision-tree) on each new datasets and
we get f̂∗b(x), the prediction at a point x, for b = 1, . . . , B

— We average all the prediction to get :

f̂bag(x) = 1
B

B∑
b=1

f̂∗b(x)

For classification, we use majority vote instead of averaging among the B
trees.

Out-of-bag error estimation

There is a straightforward way to estimate the test error of a bagged
model.

Suppose D = {x1, . . . , xn}. For a point xi, the probability to be in a new
dataset is 1 −

(
1 − 1

n

)n which is near 1 − e−1 ≊ 0.63 as n increases (and we
tend to be near this value very fast).

Therefore, on average, each observation will be in appoximately 2B/3 bag-
ged trees. For a bagged tree, the observations which are not in the bootstrap
subset of the observations are referred to as the out-of-bag (OOB) observa-
tions.

Taking all the trees in which observation i was OOB, we can predict the
response by averaging (or majority vote for classification).

6 Random forests
Random forests provide an improvement over bagged trees by a small tweak
that decorrelates the trees. This reduces the variance when we average
the trees.

The difference is just the following : each time we split, we select randomly
m predictors among M to be taken into consideration for the splitting.
A typical choice of m is

√
M . We can also choose m via out-of-bag error.

Figure 7 – Bagging and random forests

4

7 Boosting
Originally, boosting was born due to the question asked by Michael Kearns in
1988 : can we combine weak learners to generate a strong learner ?

Robert Schapire in 1990 gives an answer : create an ensemble classifier,
in an iterative way

HT (x) =
n∑

i=1
αtht(x)

Difference with bagging and random forests

It is also an ensemble method which combines many learning algorithms but,
comparing to bagging and random forest, we are doing it in an iterative way
with each learning algorithm taking into consideration the previous ones.

One difference we have to take into account is that boosting can overfit if
the number of trees is too large.

Method

We start from 0 and at each step t, we add the classifier αtht(x) to the en-
semble. We choose the new classifier in a clever way, suited for our problem.

We learn step-by-step, slowly and at the end, we evaluate all the classifiers
and return the weighted sum.

Now, we can use boosting for regression problems also.

General mathematical formulation

We have a loss function l, convex and differentiable, that we want to mini-

mize and of the form l(H) = 1
n

n∑
i=1

l(H(xi), yi) .

At each step t , for a given α, we want to solve the following optimization
problem :

argmin
h∈H

l(Ht + αh)

Then, we update H : Ht+1 := Ht + αht+1. I.e we want to find which
quantity/function we have to add to reduce our loss function as much as
possible.

Taylor’s formula gives us, for α sufficiently small :

l(H + αh) ≈ l(H)+ < ∇l(H), αh >

Seeing l(H) as l(H(x1), H(x2), . . . , H(xn)), we get :

argmin
h∈H

l(Ht + αh) ≈ argmin
h∈H

< ∇l(H), αh >= argmin
h∈H

n∑
i=1

∂l

∂H(xi)
· αh(xi)

So we can do boosting as long as we can solve :

argmin
h∈H

n∑
i=1

∂l

∂H(xi)
· h(xi)

Remark : We make progress, i.e our loss function decreases, as long as the
scalar product is lower than 0.

Example If l(H) = 1
2

∑n
i=1(H(xi) − yi)2, we have ∂l

∂H(xi) = H(xi) − yi.
Therefore, having the dot product negative implies going nearer to y from
H.

5

Given an algorithm A which can solve

A({(x1, r1), . . . , (xn, rn)}) = argmin
h∈H

∑n
i=1

∂l
∂H(xi) · h(xi), we can write the

following pseudo-code.

Figure 8 – Generic boosting in pseudo-code

Gradient Boosted Regression Tree

They are used for search engines (to predict what you are looking at).

Setting
— yi ∈ R (regression or classification)
— h regressors, fixed depth regression trees (d = 4, 6)
— Step size α is fixed to a small constant

Assumptions
n∑

i=1
h(xi)2 = cste

We are only concerned with the direction. In practice, it suffices to normalize
the predictions.

Mathematical formulation

Define ri := ∂l
∂H(xi) and ti := −ri

Our problem can be reformulated as follow.

argmin
h∈H

{
∑n

i=1 h(xi)ri} = argmin
h∈H

{−2
∑n

i=1 h(xi)ti}

argmin
h∈H

{
∑n

i=1 h(xi)ri} = argmin
h∈H

{∑n
i=1 t2

i − 2tih(xi) + h(xi)2}
argmin

h∈H
{
∑n

i=1 h(xi)ri} = argmin
h∈H

{
n∑

i=1
(h(xi) − ti)2

}

→ Therefore, we can use regression trees to {(xi, ti), i = 1, ·, n}.

Remark : If l squared loss, ti = yi − H(xi) (residuals).

6

Find the pseudo-code below :

Figure 9 – GBRT in pseudo-code

AdaBoost or Adaptive Boosting

Setting
— yi ∈ {−1, 1} (classification)
— h are binary, h(xi) ∈ {−1, 1}
— Step size : perform line-search after finding h

— Loss function : exponential loss l(H) =
n∑

i=1
e−yiH(xi)

Mathematical formulation

Define ri := ∂l
∂H(xi) = −yie

−yiH(xi) , wi := e−yiH(xi) and
Z :=

∑n
i=1 e−yiH(xi).

The weights wi represent the contribution of a training point (xi, yi)
towards the overall loss.

i) First step : find h

Recall that we want to find h such that h = argmin
h∈H

l(Ht + αh)

h ≈ argmin
h∈H

∑n
i=1 ri · h(xi)

In our case, our problem can be rewritten as :

argmin
h∈H

{
−

n∑
i=1

wiyih(xi)
}

= argmin
h∈H

 ∑
i:h(xi)̸=yi

wi −
∑

i:h(xi)=yi

wi

argmin

h∈H

∑
i:h(xi)̸=yi

wi

It is the weighted classification error .

Denote ϵ :=
∑

i:h(xi)̸=yi
wi.

Note that to make a progression, i.e decrease l, we only need to have the
ϵ < 0.5 (cf Taylor approximation).

7

ii) Second step : find α
Now that h is found, we want to solve to following problem :

α = argmin
α

l(H + αh)

We can easily show that :

α = 1
2 ln(1 − ϵ

ϵ
)

Figure 10 – GBRT in pseudo-code

8

8 Lexique
Decision-tree, CART, Regression trees, Classification trees, bagging, boots-
trapping, random forest, boosting, greedy algorithm, adaboost, anyboost,
gradient boosted regressoin tree

9 Sources
Click on the number of the figure to be redirected.
- Figure 1
- Figure 2
- Figure 3
- Figure 4
- Figure 6, The elements of statistical learning
-Figure 8,9,10 : Course notes of Kilian Weinberger on boosting methods

10 Learning resources
- The course Statistical Learning available on the plate-
form Stanford Online (https://online.stanford.edu/courses/
sohs-ystatslearning-statistical-learning).
You can also find it on Youtube (https://www.youtube.com/watch?v=
XvdLKUOldkE&list=PLOg0ngHtcqbPTlZzRHA2ocQZqB1D_qZ5V&index=48).
- You can also refer to the textbook An Introduction to Statistical Learning
(https://web.stanford.edu/~hastie/ISLR2/ISLRv2_website.pdf) or
Elements of Statistical Learning(https ://web.stanford.edu/ hastie/Pa-
pers/ESLII.pdf)
- The videos of Kilian Weinberger on his Youtube channel (https://www.
youtube.com/channel/UC7p_I0qxYZP94vhesuLAWNA/videos). Lectures 28
to 34.
- Course notes of Kilian Weinberger on his website http://www.cs.
cornell.edu/courses/cs4780/2018fa/lectures/lecturenote17.html,
17 to 19.
- A discussion about the number of trees needed for random forests
https://www.researchgate.net/post/How_to_determine_the_number_
of_trees_to_be_generated_in_Random_Forest_algorithm

9

https://www.google.com/search?q=decision+trees+example&tbm=isch&ved=2ahUKEwiFsba6upX0AhWqyLsIHRkMAXAQ2-cCegQIABAA&oq=decision+trees+example&gs_lcp=CgNpbWcQAzIECAAQEzIICAAQCBAeEBM6CAgAELEDEIMBOggIABCABBCxAzoFCAAQgAQ6BAgAEENQgktYiW1gjG9oAHAAeAGAAbYIiAH_IZIBDzAuNC4xLjAuMy4yLjAuMZgBAKABAaoBC2d3cy13aXotaW1nsAEAwAEB&sclient=img&ei=NL-PYYXHGaqR7_UPmZiEgAc&bih=821&biw=1440&rlz=1C5CHFA_enFR963FR963#imgrc=oJNbe1nab73MjM
https://www.google.com/search?q=decision+trees+structure&tbm=isch&ved=2ahUKEwi69Z3EupX0AhXEh_0HHUbICd4Q2-cCegQIABAA&oq=decision+trees+structure&gs_lcp=CgNpbWcQAzoECAAQEzoICAAQCBAeEBNQlwtYrRJg4hJoAHAAeACAAeMCiAHdC5IBBzAuMi4yLjKYAQCgAQGqAQtnd3Mtd2l6LWltZ8ABAQ&sclient=img&ei=SL-PYbqxPMSP9u8PxpCn8A0&bih=821&biw=1440&rlz=1C5CHFA_enFR963FR963#imgrc=tLDWqtbwwYd0bM
https://sakai.unc.edu/access/content/group/2842013b-58f5-4453-aa8d-3e01bacbfc3d/public/Ecol562_Spring2012/docs/lectures/lecture35.htm
https://www.google.com/search?q=classification+trees+example&tbm=isch&chips=q:classification+trees+example,online_chips:recursive+partitioning:-F0C1xxTCD%3D&rlz=1C5CHFA_enFR963FR963&hl=fr&sa=X&ved=2ahUKEwiZzYzvupX0AhUe4rsIHRaWBMAQ4lYoBnoECAEQHg&biw=1440&bih=821#imgrc=lue5Yn0VVosFGM
http://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote19.html
https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning
https://online.stanford.edu/courses/sohs-ystatslearning-statistical-learning
https://www.youtube.com/watch?v=XvdLKUOldkE&list=PLOg0ngHtcqbPTlZzRHA2ocQZqB1D_qZ5V&index=48
https://www.youtube.com/watch?v=XvdLKUOldkE&list=PLOg0ngHtcqbPTlZzRHA2ocQZqB1D_qZ5V&index=48
https://web.stanford.edu/~hastie/ISLR2/ISLRv2_website.pdf
https://www.youtube.com/channel/UC7p_I0qxYZP94vhesuLAWNA/videos
https://www.youtube.com/channel/UC7p_I0qxYZP94vhesuLAWNA/videos
http://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote17.html
http://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote17.html
https://www.researchgate.net/post/How_to_determine_the_number_of_trees_to_be_generated_in_Random_Forest_algorithm
https://www.researchgate.net/post/How_to_determine_the_number_of_trees_to_be_generated_in_Random_Forest_algorithm

	Introduction - Decision-trees
	Structure - Decision-trees
	Regression trees
	Classification trees
	Bagging
	Random forests
	Boosting
	Lexique
	Sources
	Learning resources

