PCA : Principal Component Analysis - Intuitive explanation

Réda Arab

1 Goal

The goal of PCA is to transform our feature space of dimension p to a new
feature space of dimension k < p.

It can be used for different purposes such as visualization (k = 2,3),
compression or computational (lower complexity).

Important use : having new decorrelated features.

Principle : We project our data x1,xs,...,z, € RP into a new space
of dimension k < p such that the total variance (i.e the spread of our
data) is maximized .

Notation : We write X € R™P with n the size of the sample, p the number
of features.

X=7]=(xi X2 ... X,)

In practice, we center and reduce our data before applying PCA (it simplifies
the calculation and it prevents from having one feature which contains all the
variance ; the importance of doing this transformation will be clear later).
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2 Preliminary Mathematics

2.1 SVD : Singular Value Decomposition

The reader may refer to the Wikipedia article (the schemes are interesting)
https://en.wikipedia.org/wiki/Singular_value_decomposition

Statement : For X a real matrix of R™P, it can be written as X =
UDVT with U and V two orthogonal matrices of R™*" and RP*P,
and D a matrix with diagonal terms D11 > Doy > ... > D, with
m = min(n,p) and the other elements being null.

For example, if n > p, D will be of the form :

D1y 0
0 Dy
D=| :
E Dan
0 0

Therefore :

XT'x =wpvhHTwpv?) =vDTDVT

| xTx = vAV?|

A = DTD contains the eigenvalues of X7 X (singular values squared)
which are real and positive or null.

V' contains the eigenvectors which constitute an orthonormal basis of R?.


https://en.wikipedia.org/wiki/Singular_value_decomposition

2.2 Scalar product and projection on R?

T a O

cos(a) = Il) II;’(\J\;) where p, (x) the orthogonal projection of

on the line with u as direction vector.

Therefore < z,u >= ||z||2 - |[|ul|2 - cos() = ||ul|2 - pu(z).

If ||ul|z = 1, then ‘ <z,u >= py(x) ‘

Example: projections onto unit vectors

Example: X € R*2 3.2 € R2
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FIGURE 1 — From https://www.stat.cmu.edu/~ryantibs/datamining/
lectures/07-diml.pdf

2.3 Characterization of the orthogonal projection on a
plane in R",n > 3

Reminder : Given P a plane, [Ip(x) = argmin||y — z||3 , where I p(z)
yeP

is the orthogonal projection of x on P.

Let us consider an orthonormal basis of P : (v1,v2). Yy € P,y = A\jv1 + Aavs.

ly ==l = l|l=[13 — 2 <2,y > +[yll3
lly — =13 = ||z]]3 — 2M\1 < 2,01 > —2Xg < 3,09 > +A3 + A3
Let us consider the function

A1, X)) = —2X\; < xvp > =2 < T, 09 > +AT + A2

° %:—2<x7vi>+2)\i 1=1,2

2
o =2 i=12

¢ _
® onox =0

Thereby % > 0 (Hessian matrix positive definite) so the function is

strictly convex. The minimum is reached for :

00
87—0 1.e

‘Hp(m) =< x,v1 > V14 < T,V > Uy



https://www.stat.cmu.edu/~ryantibs/datamining/lectures/07-dim1.pdf
https://www.stat.cmu.edu/~ryantibs/datamining/lectures/07-dim1.pdf

Generalization

The previous formula can be generalized easily to a projection on a space
Ey of dimension k by considering (v1,...,v;) an orthonormal basis of Ej.
We get :

g, (z) = Y5, <@ > v =Y (2Tv)v;

3 PCA - Introduction

The total variance (total sample variance) is defined as :

1 n n P
HZ ||z; — &[5 = Z |5 = ZHXng
1=1 1 =1

1=

as the datapoints are centered (i.e features). Note that the term % is not
important for the problem as we are looking for a maximum value.

— We are looking for a space of dimension k such that the projection of the
x; on this space will give us new datapoints (with new features associated)
which keeps the total variance as large as possible.

As a result, we will have a new matrix Y such that :
yi
Y3

Y = | . | with y; € R¥ such that >;", ||y;|/3 is "maximal" in the sense
Yn

defined above.

Example

Let us consider an example when we project our datapoints from a p dimen-
sional feature space to a space of dimension 1 (line).On the schemes, you
can see from dimension 2 to 1.

FIGURE 2 — Datapoints in 2D
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FIGURE 3 — New feature created with a large variance

FIGURE 4 — New feature created with a low variance



Consider the case when we have datapoints with 2 features that we want
to compress into one feature. So we are looking for a vector u (we can
restrict our search to ||ullz = 1 as we are looking for a direction) such that

the projected datapoints on u (z7wu, i=1,...,n) keeps a maximal total
variance. .
xTu
xu
ie Xu= ) and we know that z7u = p,(z;) for u with norm equals
Ty
to 1.

Mathematically, we are looking for v € R? such that :

u= argmax |[Xwv|3]| (total variance maximized).
veER2,||v|[2=1

More generally, if we have a feature space of dimension p :

u= argmax ||Xv|3
vERP,||v|]2=1

We have : || Xv||2 = vTXT Xv =0TV DT DVTv with ||v]|2 = 1.
Let us write a = V0. So ||al|z = ||[VTv||2 = ||v|]2 = 1 (as V orthogonal).

— || Xv|3 = " DT Da = doiny a;D} < D} doiny aj = D},

i —

Therefore a = (1,0,...,0)7 maximizes ||Xv]||3 i.e which

is the eigenvector associated to D?;. The direction which maximizes
|| Xv||3 is V; and in this case || X V4|3 = ||D11U1||3 = D%,

Remarks
— The projected datapoints v are centered :
S alv=( 2l )v=0.

So the total variance computed is > (z7v)? = || Xv||3

— PCA and linear regression are different.

FIGURE 5 — Linear regression

The quantities we want to minimize in each case (the red lines in figure
3 and 5) are different.



4 Formulation of the problem

The problem can be summarized as :

k
argmax Z(HszH%) such that vlwv; = §;

(Ulav27~~~;vk)€]Rp i=1

Indeed, for a space Ej of dimension k and an orthonormal basis (vy, ..., vx) :

k n n k
Hg, (z;) = Zi:l(‘rzrvl)vl and >, ||k, (1’1)“% = ie1 21:1(95?”1)2

In this new space, we can write the coordinates of the projected z;
according to the orthonormal basis as :

le T T T
yT .’131 Ul le UQ le 'Uk
2
Y = . = : : : = (le Xvg Xvk)
: T T T
T .1‘”’01 .”L'n’Ug xnvk
Yn

The total variance in this case is : ;| Zle(m?vl)Q = Zle || X v

5 Problem resolution

We can solve the problem step by step, direction by direction (the problem
is separable, it is a sum).

We can start with V] as a first new feature (¢f PCA -Introduction) then, we

are looking for a vector v(?) such that || Xv(?||3 is maximized and |[v®||; =
1 and (v®)TV; = 0.

We can easily show that .

Recursively, we are looking a vector v for j = 2,..., k, defined as below :

vl maximise | Xv||2 over v € RP with the constraints
o]l =1 and (v®)Tv =0 forall I < j

We get | (V1,. .., Vi) |, the eigenvectors X7 X associated to the eigenvalues
D%l 2D§2 > ZDik 2 0.

Therefore, the new datapoints are :

vl
T
Ys
Y=|"|=(xn XV

XVi) = (D1nUr  DasUs Dy Uy)

yr

The total variance of our new projected datapoints is :

k k
> |Dutill3 =D
=1 =1

m
The initial total variance, before the projection, is : Z DlQl
=1




Choice of k

We can define a way of choosing k& (number of new features) as below.

SE, D)
min{k | ==L > 6} witha = 0.80,0.90 or 0.95 for example

221 D

1=1 i

Final remarks
— Our new datapoints are centered as shown in a previous section.
— The new features are decorrelated :
i # 3, (XVi)T(XVy) = VIVAVTV; = 0.
— The new features are less interpretable, explainable.

— The general idea of this method of dimensionality reduction : keeping
the spread of our data as large as possible .
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FIGURE 6 — From https://www.davidzeleny.net/anadat-r/doku.php/
en:pca


https://www.davidzeleny.net/anadat-r/doku.php/en:pca
https://www.davidzeleny.net/anadat-r/doku.php/en:pca
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