PCA : Principal Component Analysis - Intuitive explanation

Réda Arab

1 Goal

The goal of PCA is to transform our feature space of dimension p to a new feature space of dimension k < p.

It can be used for different purposes such as visualization (k = 2, 3), compression or computational (lower complexity).

Important use : having new *decorrelated features*.

Principle : We project our data $x_1, x_2, ..., x_n \in \mathbb{R}^p$ into a new space of dimension k < p such that the *total variance* (i.e the *spread* of our data) is maximized.

Notation : We write $X \in \mathbb{R}^{n*p}$ with n the size of the sample, p the number of features.

$$X = \begin{pmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{pmatrix} = \begin{pmatrix} X_1 & X_2 & \dots & X_p \end{pmatrix}$$

In practice, we *center and reduce* our data before applying PCA (it simplifies the calculation and it prevents from having one feature which contains all the variance; the importance of doing this transformation will be clear later).

$$x \to \frac{x - \hat{x}}{\sigma_x}$$

2 Preliminary Mathematics

2.1 SVD : Singular Value Decomposition

The reader may refer to the Wikipedia article (the schemes are interesting) https://en.wikipedia.org/wiki/Singular_value_decomposition

Statement : For X a real matrix of \mathbb{R}^{n*p} , it can be written as $X = UDV^T$ with U and V two orthogonal matrices of \mathbb{R}^{n*n} and \mathbb{R}^{p*p} , and D a matrix with diagonal terms $D_{11} \ge D_{22} \ge \ldots \ge D_{mm}$ with m = min(n, p) and the other elements being null.

For example, if n > p, D will be of the form :

$$D = \begin{pmatrix} D_{11} & 0 & \dots & \dots \\ 0 & D_{22} & & & \\ \vdots & & \ddots & & \\ \vdots & & & D_{mm} \\ 0 & \dots & \dots & 0 \end{pmatrix}$$

Therefore :

$$X^T X = (UDV^T)^T (UDV^T) = VD^T DV^T$$

$$X^T X = V \Lambda V^T$$

 $\Lambda = D^T D$ contains **the eigenvalues** of $X^T X$ (singular values squared) which are real and positive or null.

V contains the **eigenvectors** which constitute an orthonormal basis of \mathbb{R}^p .

2.2 Scalar product and projection on \mathbb{R}^2

 $cos(\alpha) = \frac{p_u(x)}{||x||_2}$ where $p_u(x)$ the orthogonal projection of x on the line with u as direction vector.

Therefore
$$\langle x, u \rangle = ||x||_2 \cdot ||u||_2 \cdot \cos(\alpha) = ||u||_2 \cdot p_u(x).$$

If $||u||_2 = 1$, then $\langle x, u \rangle = p_u(x)$

Example: projections onto unit vectors

FIGURE 1 - From https://www.stat.cmu.edu/~ryantibs/datamining/lectures/07-dim1.pdf

2.3 Characterization of the orthogonal projection on a plane in $\mathbb{R}^n, n \geq 3$

<u>Reminder</u>: Given P a plane, $\Pi_P(x) = \underset{y \in P}{\operatorname{argmin}} ||y - x||_2^2$, where $\Pi_P(x)$ is the orthogonal projection of x on P.

Let us consider an orthonormal basis of $P : (v_1, v_2)$. $\forall y \in P, y = \lambda_1 v_1 + \lambda_2 v_2$. $||y - x||_2^2 = ||x||_2^2 - 2 < x, y > + ||y||_2^2$

$$||y - x||_2^2 = ||x||_2^2 - 2\lambda_1 < x, v_1 > -2\lambda_2 < x, v_2 > +\lambda_1^2 + \lambda_2^2$$

Let us consider the function

$$\begin{split} \phi(\lambda_1,\lambda_2) &= -2\lambda_1 < x, v_1 > -2\lambda_2 < x, v_2 > +\lambda_1^2 + \lambda_2^2 \\ \bullet \ \frac{\partial \phi}{\partial \lambda_i} &= -2 < x, v_i > +2\lambda_i \quad i = 1,2 \\ \bullet \ \frac{\partial^2 \phi}{\partial \lambda_i^2} &= 2 \quad i = 1,2 \\ \bullet \ \frac{\partial^2 \phi}{\partial \lambda_1 \partial \lambda_2} &= 0 \end{split}$$

Thereby $\frac{\partial^2 \phi}{\partial \lambda^2} \succ 0$ (Hessian matrix positive definite) so the function is strictly convex. The minimum is reached for :

$$\frac{\partial \phi}{\partial \lambda} = 0 \quad \text{i.e}$$

$$\boxed{\lambda_i = < x, v_i >} \quad i = 1, 2$$

$$\Pi_p(x) = < x, v_1 > v_1 + < x, v_2 > v_2$$

Generalization

The previous formula can be generalized easily to a projection on a space E_k of dimension k by considering $(v_1, ..., v_k)$ an orthonormal basis of E_k . We get :

$$\Pi_{E_k}(x) = \sum_{i=1}^k \langle x, v_i \rangle v_i = \sum_{i=1}^k (x^T v_i) v_i$$

3 PCA - Introduction

The total variance (total sample variance) is defined as :

$$\frac{1}{n}\sum_{i=1}^{n}||x_i - \hat{x}||_2^2 = \frac{1}{n}\sum_{i=1}^{n}||x_i||_2^2 = \frac{1}{n}\sum_{i=1}^{p}||X_i||_2^2$$

as the datapoints are centered (i.e features). Note that the term $\frac{1}{n}$ is not important for the problem as we are looking for a maximum value.

 \rightarrow We are looking for a space of dimension k such that the projection of the x_i on this space will give us new datapoints (with new features associated) which keeps the total variance as large as possible.

As a result, we will have a new matrix Y such that :

$$Y = \begin{pmatrix} y_1^T \\ y_2^T \\ \vdots \\ y_n^T \end{pmatrix}$$
 with $y_i \in \mathbb{R}^k$ such that $\sum_{i=1}^n ||y_i||_2^2$ is "maximal" in the sense defined above.

Example

Let us consider an example when we project our datapoints from a p dimensional feature space to a space of dimension 1 (line).On the schemes, you can see from dimension 2 to 1.

FIGURE 2 – Datapoints in 2D

FIGURE 3 – New feature created with a large variance

FIGURE 4 – New feature created with a low variance

Consider the case when we have datapoints with 2 features that we want to compress into one feature. So we are looking for a vector u (we can restrict our search to $||u||_2 = 1$ as we are looking for a direction) such that the projected datapoints on u $(x_i^T u, \quad i=1,\ldots,n)$ keeps a maximal total variance.

i.e
$$Xu = \begin{pmatrix} x_1^{Tu} \\ x_2^{T}u \\ \vdots \\ x_n^{T}u \end{pmatrix}$$
 and we know that $x_i^{T}u = p_u(x_i)$ for u with norm equals to 1.

Mathematically, we are looking for $u \in \mathbb{R}^2$ such that :

$$u = \underset{v \in \mathbb{R}^2, ||v||_2 = 1}{\operatorname{argmax}} ||Xv||_2^2$$
 (total variance maximized).

More generally, if we have a feature space of dimension p :

 $u = \underset{v \in \mathbb{R}^{p}, ||v||_{2} = 1}{\operatorname{argmax}} ||Xv||_{2}^{2}$

We have :
$$||Xv||_2^2 = v^T X^T X v = v^T V D^T D V^T v$$
 with $||v||_2 = 1$.
Let us write $a = V^T v$. So $||a||_2 = ||V^T v||_2 = ||v||_2 = 1$ (as V orthogonal).
 $\rightarrow ||Xv||_2^2 = a^T D^T D a = \sum_{i=1}^m a_i^2 D_{ii}^2 \le D_{11}^2 \sum_{i=1}^m a_i^2 = D_{11}^2$

Therefore $a = (1, 0, ..., 0)^T$ maximizes $||Xv||_2^2$ i.e $v = Va = V_1$ which is **the eigenvector associated to** D_{11}^2 . The direction which maximizes $||Xv||_2^2$ is V_1 and in this case $||XV_1||_2^2 = ||D_{11}U_1||_2^2 = D_{11}^2$

Remarks

- The projected datapoints $x_i^T v$ are centered : $\sum_{i=1}^n x_i^T v = (\sum_{i=1}^n x_i^T) v = 0.$ So the total variance computed is $\sum_{i=1}^n (x_i^T v)^2 = ||Xv||_2^2$
- PCA and linear regression are different.

FIGURE 5 – Linear regression

The quantities we want to minimize in each case (the red lines in figure 3 and 5) are different.

4 Formulation of the problem

The problem can be summarized as :

$$\underset{(v_1, v_2, \dots, v_k) \in \mathbb{R}^p}{\operatorname{argmax}} \sum_{i=1}^k (||Xv_i||_2^2) \quad \text{such that} \quad v_i^T v_j = \delta_{i,j}$$

Indeed, for a space E_k of dimension k and an orthonormal basis (v_1, \ldots, v_k) :

$$\Pi_{E_k}(x_i) = \sum_{i=1}^k (x_i^T v_l) v_l \quad \text{and} \quad \sum_{i=1}^n ||\Pi_{E_k}(x_i)||_2^2 = \sum_{i=1}^n \sum_{l=1}^k (x_i^T v_l)^2$$

In this new space, we can write the coordinates of the projected x_i according to the orthonormal basis as :

$$Y = \begin{pmatrix} y_1^T \\ y_2^T \\ \vdots \\ y_n^T \end{pmatrix} = \begin{pmatrix} x_1^T v_1 & x_1^T v_2 & \dots & x_1^T v_k \\ \vdots & \vdots & \dots & \vdots \\ x_n^T v_1 & x_n^T v_2 & \dots & x_n^T v_k \end{pmatrix} = (Xv_1 \quad Xv_2 \quad \dots \quad Xv_k)$$

The total variance in this case is : $\sum_{i=1}^n \sum_{l=1}^k (x_i^T v_l)^2 = \sum_{i=1}^k ||X v_l||_2^2$

5 Problem resolution

We can solve the problem step by step, *direction by direction* (the problem is separable, it is a sum).

We can start with V_1 as a first new feature (*cf PCA -Introduction*) then, we are looking for a vector $v^{(2)}$ such that $||Xv^{(2)}||_2^2$ is maximized and $||v^{(2)}||_2 = 1$ and $(v^{(2)})^T V_1 = 0$.

We can easily show that $v^{(2)} = V_2$.

Recursively, we are looking a vector $v^{(j)}$ for j = 2, ..., k, defined as below :

$$v^{(j)}$$
 maximise $||Xv||_2$ over $v \in \mathbb{R}^p$ with the constraints $||v||_2 = 1$ and $(v^{(l)})^T v = 0$ for all $l < j$

We get (V_1, \ldots, V_k) , the eigenvectors $X^T X$ associated to the eigenvalues $D_{11}^2 \ge D_{22}^2 \ge \cdots \ge D_{kk}^2 \ge 0.$

Therefore, the new datapoints are :

$$Y = \begin{pmatrix} y_1^T \\ y_2^T \\ \vdots \\ y_n^T \end{pmatrix} = \begin{pmatrix} XV_1 & XV_2 & \dots & XV_k \end{pmatrix} = \begin{pmatrix} D_{11}U_1 & D_{22}U_2 & \dots & D_{kk}U_k \end{pmatrix}$$

The total variance of our new projected datapoints is :

$$\sum_{l=1}^{k} ||D_{ll}U_{l}||_{2}^{2} = \sum_{l=1}^{k} D_{ll}^{2}$$

The initial total variance, before the projection, is : $\left| \sum_{l=1}^{n} D_{ll}^{2} \right|$

Choice of k

We can define a way of choosing k (number of new features) as below.

$$\boxed{\min\{k \mid \frac{\sum_{l=1}^{k} D_{ll}^{2}}{\sum_{l=1}^{m} D_{ll}^{2}} \ge a\} \quad \text{with} \, a = 0.80, 0.90 \, \text{or} \, 0.95 \, \text{for example}}$$

Final remarks

- Our new datapoints are **centered** as shown in a previous section.
- The new features are **decorrelated** :

$$i \neq j, (XV_i)^T (XV_j) = V_i^T V \Lambda V^T V_j = 0.$$

- The new features are less interpretable, explainable.
- The general idea of this method of dimensionality reduction : keeping the spread of our data as large as possible .

FIGURE 6 - From https://www.davidzeleny.net/anadat-r/doku.php/en:pca