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1 Goal
The goal of PCA is to transform our feature space of dimension p to a new
feature space of dimension k < p.

It can be used for different purposes such as visualization (k = 2, 3),
compression or computational (lower complexity).

Important use : having new decorrelated features.

Principle : We project our data x1, x2, ..., xn ∈ Rp into a new space
of dimension k < p such that the total variance (i.e the spread of our
data) is maximized .

Notation : We write X ∈ Rn∗p with n the size of the sample, p the number
of features.

X =


xT1
xT2
...
xTn

 =
(
X1 X2 . . . Xp

)

In practice, we center and reduce our data before applying PCA (it simplifies
the calculation and it prevents from having one feature which contains all the
variance ; the importance of doing this transformation will be clear later).

x→ x− x̂
σx

2 Preliminary Mathematics

2.1 SVD : Singular Value Decomposition

The reader may refer to the Wikipedia article (the schemes are interesting)
https://en.wikipedia.org/wiki/Singular_value_decomposition

Statement : For X a real matrix of Rn∗p, it can be written as X =
UDV T with U and V two orthogonal matrices of Rn∗n and Rp∗p,
and D a matrix with diagonal terms D11 ≥ D22 ≥ . . . ≥ Dmm with
m = min(n, p) and the other elements being null.

For example, if n > p, D will be of the form :

D =



D11 0 . . . . . .
0 D22
...

. . .
... Dmm

0 . . . . . . 0


Therefore :

XTX = (UDV T )T (UDV T ) = V DTDV T

XTX = V ΛV T

Λ = DTD contains the eigenvalues of XTX (singular values squared)
which are real and positive or null.

V contains the eigenvectors which constitute an orthonormal basis of Rp.
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2.2 Scalar product and projection on R2

cos(α) = pu(x)
||x||2 where pu(x) the orthogonal projection of x

on the line with u as direction vector.

Therefore < x, u >= ||x||2 · ||u||2 · cos(α) = ||u||2 · pu(x).

If ||u||2 = 1, then < x, u >= pu(x)

Figure 1 – From https://www.stat.cmu.edu/~ryantibs/datamining/
lectures/07-dim1.pdf

2.3 Characterization of the orthogonal projection on a
plane in Rn, n ≥ 3

Reminder : Given P a plane, ΠP (x) = argmin
y∈P

||y− x||22 , where ΠP (x)

is the orthogonal projection of x on P .

Let us consider an orthonormal basis of P : (v1, v2). ∀y ∈ P, y = λ1v1 +λ2v2.

||y − x||22 = ||x||22 − 2 < x, y > +||y||22

||y − x||22 = ||x||22 − 2λ1 < x, v1 > −2λ2 < x, v2 > +λ2
1 + λ2

2

Let us consider the function

φ(λ1, λ2) = −2λ1 < x, v1 > −2λ2 < x, v2 > +λ2
1 + λ2

2

• ∂φ
∂λi

= −2 < x, vi > +2λi i = 1, 2

• ∂2φ
∂λ2

i
= 2 i = 1, 2

• ∂2φ
∂λ1∂λ2

= 0

Thereby ∂2φ
∂λ2 � 0 (Hessian matrix positive definite) so the function is

strictly convex. The minimum is reached for :

∂φ

∂λ
= 0 i.e

λi =< x, vi > i = 1, 2

Πp(x) =< x, v1 > v1+ < x, v2 > v2
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Generalization

The previous formula can be generalized easily to a projection on a space
Ek of dimension k by considering (v1, ..., vk) an orthonormal basis of Ek.
We get :

ΠEk
(x) =

∑k
i=1 < x, vi > vi =

∑k
i=1(xT vi)vi

3 PCA - Introduction
The total variance (total sample variance) is defined as :

1
n

n∑
i=1
||xi − x̂||22 = 1

n

n∑
i=1
||xi||22 = 1

n

p∑
i=1
||Xi||22

as the datapoints are centered (i.e features). Note that the term 1
n is not

important for the problem as we are looking for a maximum value.

→We are looking for a space of dimension k such that the projection of the
xi on this space will give us new datapoints (with new features associated)
which keeps the total variance as large as possible.

As a result, we will have a new matrix Y such that :

Y =


yT1
yT2
...
yTn

 with yi ∈ Rk such that
∑n
i=1 ||yi||22 is "maximal" in the sense

defined above.

Example

Let us consider an example when we project our datapoints from a p dimen-
sional feature space to a space of dimension 1 (line).On the schemes, you
can see from dimension 2 to 1.

Figure 2 – Datapoints in 2D

Figure 3 – New feature created with a large variance

Figure 4 – New feature created with a low variance
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Consider the case when we have datapoints with 2 features that we want
to compress into one feature. So we are looking for a vector u (we can
restrict our search to ||u||2 = 1 as we are looking for a direction) such that
the projected datapoints on u (xTi u, i = 1, . . . , n) keeps a maximal total
variance. .

i.e Xu =


xTu1
xT2 u
...

xTnu

 and we know that xTi u = pu(xi) for u with norm equals

to 1.

Mathematically, we are looking for u ∈ R2 such that :

u = argmax
v∈R2,||v||2=1

||Xv||22 (total variance maximized).

More generally, if we have a feature space of dimension p :

u = argmax
v∈Rp,||v||2=1

||Xv||22

We have : ||Xv||22 = vTXTXv = vTV DTDV T v with ||v||2 = 1.

Let us write a = V T v. So ||a||2 = ||V T v||2 = ||v||2 = 1 (as V orthogonal).

→ ||Xv||22 = aTDTDa =
∑m
i=1 a

2
iD

2
ii ≤ D2

11
∑m
i=1 a

2
i = D2

11

Therefore a = (1, 0, . . . , 0)T maximizes ||Xv||22 i.e v = V a = V1 which
is the eigenvector associated to D2

11. The direction which maximizes
||Xv||22 is V1 and in this case ||XV1||22 = ||D11U1||22 = D2

11

Remarks

— The projected datapoints xTi v are centered :∑n
i=1 x

T
i v = (

∑n
i=1 x

T
i )v = 0.

So the total variance computed is
∑n
i=1(xTi v)2 = ||Xv||22

— PCA and linear regression are different.

Figure 5 – Linear regression

The quantities we want to minimize in each case (the red lines in figure
3 and 5) are different.
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4 Formulation of the problem

The problem can be summarized as :

argmax
(v1,v2,...,vk)∈Rp

k∑
i=1

(||Xvi||22) such that vTi vj = δi,j

Indeed, for a space Ek of dimension k and an orthonormal basis (v1, . . . , vk) :

ΠEk
(xi) =

∑k
i=1(xTi vl)vl and

∑n
i=1 ||ΠEk

(xi)||22 =
∑n
i=1
∑k
l=1(xTi vl)2

In this new space, we can write the coordinates of the projected xi
according to the orthonormal basis as :

Y =


yT1
yT2
...
yTn

 =

x
T
1 v1 xT1 v2 . . . xT1 vk
...

... . . .
...

xTnv1 xTnv2 . . . xTnvk

 =
(
Xv1 Xv2 . . . Xvk

)

The total variance in this case is :
∑n
i=1
∑k
l=1(xTi vl)2 =

∑k
i=1 ||Xvl||22

5 Problem resolution

We can solve the problem step by step, direction by direction (the problem
is separable, it is a sum).

We can start with V1 as a first new feature (cf PCA -Introduction) then, we
are looking for a vector v(2) such that ||Xv(2)||22 is maximized and ||v(2)||2 =
1 and (v(2))TV1 = 0.

We can easily show that v(2) = V2 .

Recursively, we are looking a vector v(j) for j = 2, . . . , k, defined as below :

v(j) maximise ‖Xv‖2 over v ∈ Rp with the constraints
‖v‖2 = 1 and (v(l))T v = 0 for all l < j

We get (V1, . . . , Vk) , the eigenvectors XTX associated to the eigenvalues
D2

11 ≥ D2
22 ≥ · · · ≥ D2

kk ≥ 0.

Therefore, the new datapoints are :

Y =


yT1
yT2
...
yTn

 =
(
XV1 XV2 . . . XVk

)
=
(
D11U1 D22U2 . . . DkkUk

)

The total variance of our new projected datapoints is :

k∑
l=1
||DllUl||22 =

k∑
l=1

D2
ll

The initial total variance, before the projection, is :
m∑
l=1

D2
ll
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Choice of k

We can define a way of choosing k (number of new features) as below.

min{k |
∑k
l=1 D

2
ll∑m

l=1 D
2
ll

≥ a} with a = 0.80, 0.90 or 0.95 for example

Final remarks

— Our new datapoints are centered as shown in a previous section.
— The new features are decorrelated :

i 6= j, (XVi)T (XVj) = V Ti V ΛV TVj = 0.

— The new features are less interpretable, explainable.
— The general idea of this method of dimensionality reduction : keeping

the spread of our data as large as possible .

Figure 6 – From https://www.davidzeleny.net/anadat-r/doku.php/
en:pca
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