PCA : Principal Component Analysis
Intuitive explanation

Réda Arab

1 Goal

The goal of PCA is to transform our feature space of dimension p to a new
feature space of dimension k < p.
It can be used for different purposes : visualization (k = 2,3), compression,

computational (lower complexity) or to avoid overfitting (however, it is not
a "good practice’; it is better to regularize for example, one of the reason is

because of the ’fitting’ part).

Important use : having new decorrelated features.

Principle : We project our data x1,xs,...,z, € RP into a new space of dimen-
sion k < p such that the total variance (i.e the spread of our data) is maximized

Notation : We write X € R™P with n the size of the sample, p the number of
features.

In practice, we center and reduce our data before applying PCA (it simplifies
the calculation and it prevents from having one feature which contains all the
variance ; the importance of doing this transformation will be clear later).
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2 Preliminary Mathematics

2.1 SVD : Singular Value Decomposition

The reader may refer to the Wikipedia article (the schemes are interesting)
https://en.wikipedia.org/wiki/Singular_value_decomposition

Statement : For X a real matrix of R™*P?, it can be written as X = UDVT
with U and V two orthogonal matrices of R™*" and RP*P, and D a matrix with
diagonal terms D17 > Dag > ... > Dy, with m = min(n,p) and the other
elements being null.

For example, if n > p, D will be of the form :

Dy 0
D=1 :
Dmm
0 0

Therefore :

XT'x =wpvhHTwpv?)=vDT'DVT

[XTX = VAV |

A = DTD contains the eigenvalues of X7 X (singular values squared) which
are real and positive or null.

V' contains the eigenvectors which constitute an orthonormal basis of RP.


https://en.wikipedia.org/wiki/Singular_value_decomposition

2.2 Scalar product and projection on R?
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We have : cos(a) = "’ ";:(Hi) where p, (x) the orthogonal projection of = on the line

with u as direction vector.

Therefore < z,u >= ||z||2 - ||ul|2 - cos(a) = ||u||2 - pu(x).

If ||u||2 = 1, then ‘ < x,u >=py(x) ‘

2.3 Characterization of the orthogonal projection on a
plane in R",n > 3

Reminder : Given P a plane, IIp(x) = argmin||y — z||3 where IIp(x) is the
yer
orthogonal projection of x on P.

Let us consider an orthonormal basis of P : (vi,v2). Yy € P,y = Ajv1 + Agvs.

So :
ly — |5 = [|z]13 — 2 < =,y > +[yll3

lly — z||2 = ||2]|3 — 2M\1 < 2,01 > —2Xg < 7,09 > +A2 + A3

Let us consider the function ¢(A,X2) = —2\; < z,v; > —2X\y < 2,03 >
+A? + )\

H=-2<zu>42) i=1,2

gi‘; —92 i=1,2

oo =0

2
Thereby, % > 0 (Hessian matrix positive definite) so the function is strictly
convex. The minimum is reached for :

op .
5—0 1.

And ‘Hp(a:) =< z,v1 > v+ < T,V2 > Vg




Generalization

The previous formula can be generalized easily to a projection on a space Ej of
dimension k by considering (v1, ..., vx) an orthonormal basis of Fy. We get :

g, () = Y0, <a,v > v =Y (27 0)v;

3 PCA - Introduction

The total variance is defined as :

1 n n p
EZII:& — 25 =D llalls = > IIXill3
i=1 =1 =1
1

as the datapoints are centered (i.e features). The term + (or —5) is not impor-
tant for the problem.

— We are looking for a space of dimension k such that the projection of the z;
on this space will give us new datapoints (with new features associated) which
keeps the total variance as large as possible.

As a result, we will have a new matrix Y such that :

vi
v

Y = | . | withy; € R¥ such that > ;" ||y;|3 is "maximal” in the sense defined
Un

above.

Example

Let us consider an example when we project our datapoints from a p dimensional
feature space to a space of dimension 1 (line).On the schemes, you can see from
dimension 2 to 1.

FIGURE 1 — Datapoints in 2D
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FIGURE 2 — New feature created with a large variance

FIGURE 3 — New feature created with a low variance

Consider the case when we have datapoints with 2 features that we want to
compress into one feature. So we are looking for a vector u (we can restrict our
search to ||u||l2 = 1 as we are looking for a direction) such that the projected

datapoints on u (a:zTu, i=1,...,n) keeps a maximal total variance. .
gc’ff“
x3u

ie Xu= ) and we know that z7u = p,(z;) for u with norm equals to 1.
xTy

Mathematically, we are looking for v € R? such that :

u= argmax |[Xv|2
vER?,||v]|2=1

(total variance maximized).

More generally, if we have a feature space of dimension p :

u= argmax || Xv|3
vERP,||v||2=1




We have : || Xv||3 = vT XT Xv =0TV DT DVTy with ||v]]2 = 1.
Let us write a = VTv. So ||al|a = ||[VTv||2 = ||v]|2 = 1 (as V orthogonal).

— || Xv||2 = aT" DT Da = Z:r;l a?D? < D3, 221 a? = D%

171 —

Therefore a = (1,0,...,0)T maximizes ||Xv|[3 i.e which is the

eigenvector associated to D?,. The direction which maximizes || Xv||3 is V4
and in this case || X V1|3 = ||D11U41]|3 = D},
Remarks

— The projected datapoints z! v are centered ( Y i, ziv = (31, a2l )v =

0), so the total variance computed is > (z7v)? = || Xv]|3

— PCA and linear regression are different.
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FIGURE 4 — Linear regression

The quantities we want to minimize in each case (the red lines in figure 2
4) are different.



4 Formulation of the problem

The problem can be summarized as :

k
argmax Z(HXUZHg) such that vlv; =48, ;

(v1,v2,...,0,)ERP 7

Indeed, for a space Ej of dimension k and an orthonormal basis (vy,...,vg) :

k n n k
Up, (z;) = Zi:l(xzrul)ul and YL, [k, (%)H% =i Zl:1(£?”l)2

In this new space, we can write the coordinates of the projected z; according
to the orthonormal basis as :

le T T T
yT TryU1 I U2 .. T Uk
2
y=|"7"1]= : : : = (Xv1 Xvy ... Xu)
: T T T
T r,v1r T,v2 ... I,V
Yn

The total variance in this case is : 37 S°F_ (2Tv)% = S5 [| X |3

5 Problem resolution
We can solve the problem step by step, direction by direction (the problem is
separable, it is a sum).

We can start with V; as a first new feature (¢f PCA -Introduction) then, we are
looking for a vector v(? such that || Xv(?||3 is maximized and ||v(?)||; = 1 and
)TV, = 0.

We can easily show that .

Recursively, we are looking a vector v\9) for j =2, ..., k, defined as below :

v maximise | Xv||2 over v € RP with the constraints
[v]l2 =1 and (v)Tv =0 for all I < j

We get | (V1,...,Vi) |, the eigenvectors X7 X associated to the eigenvalues
D}y > D3y > -+ > Djy > 0.



Therefore, the new datapoints are :

T
Yi
T
Ya
Y = : :(XV1 XVy ... XVk):(DuUl DosUs ... DkkUk)
Yo

k k
The total variance of our new projected datapoints is : Z ||DuU||5 = Z D3
=1 =1

m
The initial total variance, before the projection, is : Z Dfl
=1

Choice of k

We can define a way of choosing k (number of new features) as below.

> Dj
min{k | ==L > 6} withae = 0.80,0.90 or 0.95 for example

iz Dii

Final remarks

— Our new datapoints are centered as shown in a previous section.

— The new features are decorrelated :
i # 5, (XVi)T(XV;) = VIVAVTV; = 0.

— The new features are less interpretable, explainable.

— The general idea of this method of dimensionality reduction : keeping
the spread of our data as large as possible .
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