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1 Empirical correlation and geometry
1.1 Link between scalar product and correlation
Suppose that we have two vectors U and V in Rn, n ≥ 1

U =


u1
u2
...

un

 and V =


v1
v2
...

vn


such that Ū = 1

n

n∑
i=1

ui = 0 , V̄ = 1
n

n∑
i=1

vi = 0

Therefore, the empirical covariance and correlation are :

cov(U, V ) =
n∑

i=1
uivi

corr(U, V ) =

n∑
i=1

uivi√
n∑

i=1
u2

i ·
n∑

i=1
v2

i

= r

Defining r as the empirical correlation, we can rewrite it as :

r = ⟨U, V ⟩
∥U∥2∥V ∥2

= ⟨ U

∥U∥2
,

V

∥V ∥2
⟩

Therefore, if the empirical correlation r is near 1 (or -1), it means that U
and V are closely aligned. Indeed, the scalar product of two unit vectors
depends only on the angle between these two vectors (here U

∥U∥2
and V

∥V ∥2
).

1.2 Mathematical details
1.2.1 Projection on a vector

Let us define PV (U) the orthogonal projection of a vector U onto a vector
V . We have PV (U) = α · V , where α is a real number.
We can decompose U as U = PV (U) + ε, where ε and V are orthogonal.
Therefore :

⟨U, V ⟩ = ⟨PV (U), V ⟩ = ⟨α · V, V ⟩ = α∥V ∥2
2

so α = ⟨U, V ⟩
∥V ∥2

2
and PV (U) = ⟨U, V ⟩

∥V ∥2
2

· V

We get :

U = PV (U) + ε = ⟨U, V ⟩
∥V ∥2

2
V + ε with ⟨V, ε⟩ = 0

i.e.

U = r · ∥U∥2

∥V ∥2
V + ε

After simplification, we obtain :

∥ε∥2
2 = ∥U − r · ∥U∥2

∥V ∥2
V ∥2

2

∥ε∥2
2 = (1 − r2)∥U∥2

2

So if r is near 1 or -1, ε will have a norm near 0 and so U and V will be
closely aligned.
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1.2.2 Projection on a space generated by a set of vectors

Consider U a vector in Rn and V = span(V1, . . . , Vk) where Vi in Rn for
i = 1, . . . , k (all having mean 0).

Suppose there is i ∈ {1, . . . , k} such that :

ri = ⟨U, Vi⟩
∥U∥2∥Vi∥2

≈ 1 (or − 1)

Therefore, we have shown in the previous section that :

U = PVi
(U) + εi and ∥εi∥2

2 = (1 − r2
i )∥U∥2

2

where PVi
(U) is the orthogonal projection of U on Vi.

Let us denote ΠV(U) the orthogonal projection of U on V, and we decompose
U as U = ΠV(U) + ε.

We know that ΠV(U) can be characterized as :

ΠV(U) = arg min∥U − v∥2
2

v∈V

Therefore, ∥U − ΠV(U)∥2
2 ≤ ∥U − v∥2

2 for any v in V.

In particular :

∥U − ΠV(U)∥2
2 = ∥ε∥2

2 ≤ ∥U − PVi(U)∥2
2 = ∥εi∥2

2

So

∥ε∥2
2 ≤ (1 − r2

i )∥U∥2
2

If we have U and Vi closely aligned, we have U and V closely aligned (obvious
geometrically speaking) and ε very small.
So if U and Vi are highly correlated, the projection of U on the orthogonal
space of V (which is ε) will have a very low norm.

Figure 1 – Projection of U on a vector V

Figure 2 – Projection of U onto span(V1, . . . , Vk)
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2 Recap : Ordinary Least Squares
2.1 Context and problem
Consider observations (Yi, xi) ∈ R×Rp, i = 1, . . . , n, and the aim is to infer
a simple regression function relating the average value of a response, Yi, and
a collection of predictors or variables, xi (i.e. regression task).

A linear model for the data assumes that it is generated according to

Y = Xβ0 + ε

where Y ∈ Rn is the vector of responses ; X ∈ Rn×p is the predictor matrix
(or design matrix) with i th row xT

i ; ε ∈ Rn represents random error ; and
β0 ∈ Rp is the unknown vector of coefficients.

Y =


Y1
Y2
...

Yn

 , X =


xT

1
xT

2
...

xT
n

 =
(
X1 X2 . . . Xp

)

Caution : ε here is the random error and should not be confused with the
epsilon defined in the previous part which was in the decomposition of a
vector into 2 orthogonal vectors. Here :

ε ∼ N (0, σ2I)

Provided p ≤ n and X full column rank, we can estimate β by ordinary
least squares (OLS). This leads to an estimator β̂OLS with

β̂OLS := arg min
β∈Rp

∥Y − Xβ∥2
2 =

(
XT X

)−1
XT Y

Under the assumptions that E (εi) = 0 and Var(ε) = σ2I (and fixed design),
we have :

• Eβ0,σ2

(
β̂OLS

)
= E

{(
XT X

)−1
XT

(
Xβ0 + ε

)}
= β0.

• Varβ0,σ2

(
β̂OLS

)
=

(
XT X

)−1
XT Var(ε)X

(
XT X

)−1 = σ2 (
XT X

)−1
.

2.2 OLS and orthogonal projections
The fitted values, Ŷ := Xβ̂ are then given by X

(
XT X

)−1
XT Y .

We define P as P := X
(
XT X

)−1
XT . It is an orthogonal projection onto

the column space of X (P known as the ’hat’ matrix because it puts the
hat on Y ).

Indeed, P T = P , P ◦ P = P and Im(P ) = Im(X) = span(X1, ..., Xp).

(I − P ), where I is the idendity matrix, is the orthogonal projection onto
Im(X)⊥, the orthogonal space of Im(X).

N.B. An important point for the next step is the following : we often scale
our columns before doing OLS (for example to use Gradient Descent more
efficiently). So in general, the columns of X have mean 0 and we are in the
context of the part 1. for which we suppose that the vectors have mean 0.
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3 Another way of computing the estimates of
the coefficients for OLS

Let us write Xj for the jth column of X, and X−j for the n× (p−1) matrix
formed by removing the jth column from X. Define P−j as the orthogonal
projection on to the column space of X−j (i.e. the space generated by the
p − 1 other columns).

Proposition : Let X⊥
j := (I − P−j) Xj , so X⊥

j is the orthogonal projection of
Xj on to the orthogonal complement of the column space of X−j . Then

β̂j =
(
X⊥

j

)T
Y∥∥X⊥

j

∥∥2

We have Var
(

β̂j

)
= σ2 ∥∥X⊥

j

∥∥−2 .

Thus if Xj is closely aligned to the column space of X−j , the variance of
β̂j will be large. In particular, if Xj and another columns Xi are highly
correlated, the quantity

∥∥X⊥
j

∥∥−2 will be large and the variance also.

Indeed, we showed this in part 1.2.2 taking U = Xj , V =
span(X1, . . . , Xj−1, Xj , , Xp) and ΠV(U) = P−jXj . So ε = X⊥

j .

Proof. Note that Y = PY + (I − P )Y and

XT
j (I − P−j) (I − P )Y = XT

j (I − P )Y = 0,

so (
X⊥

j

)T
Y∥∥X⊥

j

∥∥2 =
(
X⊥

j

)T
X

(
XT X

)−1
XT Y∥∥X⊥

j

∥∥2

Since X⊥
j is orthogonal to the column space of X−j , we have(

X⊥
j

)T
X =

(
0 · · · 0

(
X⊥

j

)T
Xj0 · · · 0

)
and

(
X⊥

j

)T
Xj = XT

j (I − P−j) Xj = ∥(I − P−j) Xj∥2

Conclusion : If a pair of variables are highly correlated with each other,
the variances of the estimates of the corresponding coefficients will be large
which is something that we want to avoid.

Figure 3 – Geometrical interpretation. Xi, a variable highly correlated
with Xj , is added in the second scheme.

4 Appendix
Another way of seeing it, taking into account eigenvalues and SVD :
https://towardsdatascience.com/why-exclude-highly-correlated-f
eatures-when-building-regression-model-34d77a90ea8e
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