Linear Regression - Correlated features
One geometrical approach
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1 Empirical correlation and geometry

1.1 Link between scalar product and correlation

Suppose that we have two vectors U and V in R™,n > 1
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Therefore, the empirical covariance and correlation are :
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Defining r as the empirical correlation, we can rewrite it as :
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Therefore, if the empirical correlation r is near 1 (or -1), it means that U
and V are closely aligned. Indeed, the scalar product of two unit vectors
depends only on the angle between these two vectors (here ﬁ and ﬁ)

1.2 Mathematical details
1.2.1 Projection on a vector

Let us define Py (U) the orthogonal projection of a vector U onto a vector
V. We have Py (U) = o - V, where « is a real number.

We can decompose U as U = Py (U) + ¢, where € and V' are orthogonal.

Therefore :
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After simplification, we obtain :
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So if r is near 1 or -1, £ will have a norm near 0 and so U and V will be
closely aligned.



1.2.2 Projection on a space generated by a set of vectors

Consider U a vector in R™ and V = span(Vy,...,V;) where V; in R™ for
i=1,...,k (all having mean 0).

Suppose there is i € {1, ..., k} such that :
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Therefore, we have shown in the previous section that :

U=Py(U)+e and el =1 -r)I|U]3
where Py, (U) is the orthogonal projection of U on V;.

Let us denote ITy,(U) the orthogonal projection of U on V, and we decompose
UasU=Ty{U) +e.
We know that ITy,(U) can be characterized as :

IIy(U) = arg min||U — v||§
veEY

Therefore, ||U — IIy,(U)|3 < ||[U — v||3 for any v in V.

In particular :

IU =T (U)|5 = llell5 < IU = Py, (U)I5 = [le:ll3
So

[l < (1 = r2)U3]

If we have U and V; closely aligned, we have U and V closely aligned (obvious
geometrically speaking) and & very small.

So if U and V; are highly correlated, the projection of U on the orthogonal
space of V (which is €) will have a very low norm.
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FIGURE 1 — Projection of U on a vector V/

span(Vy, ..., V,.)

FIGURE 2 — Projection of U onto span(Vi, ...
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2 Recap : Ordinary Least Squares

2.1 Context and problem

Consider observations (Y;,z;) € RxRP i =1,...,n, and the aim is to infer
a simple regression function relating the average value of a response, Y;, and
a collection of predictors or variables, z; (i.e. regression task).

A linear model for the data assumes that it is generated according to

Y =Xp8"+¢

where Y € R™ is the vector of responses; X € R™*? is the predictor matrix
(or design matrix) with i th row x7;e € R™ represents random error ; and
B € R? is the unknown vector of coefficients.
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Caution : € here is the random error and should not be confused with the
epsilon defined in the previous part which was in the decomposition of a
vector into 2 orthogonal vectors. Here :

e~ N(0, o°1)

Provided p < n and X full column rank, we can estimate B by ordinary
least squares (OLS). This leads to an estimator 395 with

BOLS := arg min||Y — XﬂH% = (XTX)_l Xy
BERP

Under the assumptions that E (g;) = 0 and Var(e) = oI (and fixed design),
we have :
BOLS Ty ! xT 0 0
o Egoe (B85 ) =E{(X7X) 7" X7 (X3 +¢) } = °.

o Vargo 2 (BO15) = (XTX) ™ X7 Var(e)X (X7X) ™ = 0* (X7X) .

2.2 OLS and orthogonal projections
The fitted values, Y := X3 are then given by X (XTX)_1 XTy.

We define P as P := X (XTX)f1 XT. It is an orthogonal projection onto
the column space of X (P known as the "hat’ matrix because it puts the
hat on Y').

Indeed, PT = P, Po P = P and Im(P) = Im(X) = span(X1, ..., Xp)-

(I — P), where I is the idendity matrix, is the orthogonal projection onto
Im(X)*, the orthogonal space of Im(X).

N.B. An important point for the next step is the following : we often scale
our columns before doing OLS (for example to use Gradient Descent more
efficiently). So in general, the columns of X have mean 0 and we are in the
context of the part 1. for which we suppose that the vectors have mean 0.



3 Another way of computing the estimates of
the coefficients for OLS

Let us write X; for the j*" column of X, and X_; for the n x (p— 1) matrix
formed by removing the j'" column from X. Define P_; as the orthogonal
projection on to the column space of X_; (i.e. the space generated by the
p — 1 other columns).

Proposition : Let Xj- = - P_;)Xj,s0 XJJ- is the orthogonal projection of
X on to the orthogonal complement of the column space of X_;. Then
s _(hy
j = T2
el
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Thus if X; is closely aligned to the column space of X_;, the variance of
B; will be large. In particular, if X; and another columns X; are highly

correlated, the quantity HX ]L H_2 will be large and the variance also.

Indeed, we showed this in part 1.2.2 taking U = X,;, V =
span(Xl,...,Xj_l,Xj,,Xp) and Hv(U) = P_ij. So e = XJJ‘

Proof. Note that Y = PY + (I — P)Y and
X/ (I-P;)(I-P)Y =X/(I-P)Y =0,
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Since X jJ- is orthogonal to the column space of X_;, we have
T T
(X)X = (o---o(Xj ) on---o)
T 2
and (Xj°)" X; = X[ (I - P;)X; = (I - P;) X}
Conclusion : If a pair of variables are highly correlated with each other,

the variances of the estimates of the corresponding coefficients will be large
which is something that we want to avoid.
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FIGURE 3 — Geometrical interpretation. X;, a variable highly correlated
with X, is added in the second scheme.

4 Appendix

Another way of seeing it, taking into account eigenvalues and SVD :
https://towardsdatascience.com/why-exclude-highly-correlated-f
eatures—when-building-regression-model-34d77a90ea8e


https://towardsdatascience.com/why-exclude-highly-correlated-features-when-building-regression-model-34d77a90ea8e
https://towardsdatascience.com/why-exclude-highly-correlated-features-when-building-regression-model-34d77a90ea8e

	Empirical correlation and geometry
	Link between scalar product and correlation
	Mathematical details
	Projection on a vector
	Projection on a space generated by a set of vectors


	Recap : Ordinary Least Squares
	Context and problem
	OLS and orthogonal projections

	Another way of computing the estimates of the coefficients for OLS
	Appendix

